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Project Report 

 
1. Introduction and Project Objective 

 

Recently, plastic optical fibers (POFs) have emerged as a low-cost alternative to the conventional 

connection cables and optical fibers, promising many exciting applications in short-reach 

connections including home networks, industrial networks, digital home appliances, automotive, 

remote sensing, and medical controls. To date, however, there are no optical transmitters that can 

meet the bandwidth, performance and cost requirements at the low POF attenuation windows 

near 570 nm [1], due to the lack of a mature semiconductor laser technology in the deep green 

and yellow wavelength range. InGaAlP/GaAs materials have been intensively studied for orange 

and red-emitting devices [2-4]. The achievement of high quality InGaP/InAlGaP quantum well 

heterostructures with strong carrier confinement has remained difficult in the yellow and orange 

spectral range [4]. InGaN exhibits direct energy bandgap in the range of 3.4 eV to 0.65 eV by 

varying alloy compositions [5]. However, the emission wavelengths of InGaN quantum well 

lasers have been limited to the near-ultraviolet, blue, and blue-green spectral ranges [6-8]. The 

challenges for realizing InGaN-based green and yellow lasers include the presence of large 

densities of defects and dislocations due to the large lattice mismatch (~11%) between InN and 

GaN [9-11], large strain-induced polarization field and the resulting quantum-confined Stark 

effect (QCSE), and the difficulty in realizing efficient p-type conduction in In-rich InGaN. 

Recently, significant progress has been made in InGaN nanowire heterostructures, which are 

virtually free of dislocation and exhibit a very small level of strain field, due to the efficient 

strain relaxation related to the large surface-to-volume ratio [12-18]. 
 

In this project, we propose to investigate the molecular beam epitaxial (MBE) growth and 

properties of InGaN/GaN dot-in-nanowire heterostructures. The nanowire arrays will be grown 

by the technique of selective area epitaxy, which can offer a precise control of the size, spacing, 

and emission wavelength. By optimizing the size and quantum-confinement and by incorporating 

core-shell structures, we aim to achieve InGaN dot-in-nanowire arrays with high luminescence 

efficiency. Moreover, the design and fabrication of InGaN nanowire lasers will be investigated. 

Work in this project will enable an unprecedented understanding of the selective area epitaxy, 

and optical and electronic properties InGaN dot-in-nanowire heterostructures and the realization 

of a new generation of high performance semiconductor lasers for both short-reach and on-chip 

optical interconnects.    

 

2. Summary of the Most Important Results 
 

2.1. Selective area epitaxy of InGaN dot-in-nanowire heterostructures 
 

In this project, InGaN nanowire arrays were grown on n-type GaN template on sapphire 

substrate by radio frequency (RF) plasma-assisted MBE system using the special technique of 

selective area epitaxy, schematically shown in Fig. 1. n-GaN:Si nanocrystal arrays were first 

grown with a substrate temperature of 850 °C, a nitrogen flow rate of 0.4 standard cubic 

centimeter per minute (sccm), and Ga beam equivalent pressure (BEP) of ~2.9 × 10-7 Torr. The 

InGaN/AlGaN core-shell heterostructures were incorporated in the laser active region. To form 

the core-shell structure, first the core InGaN disk layer was grown on the top surface region of n-

GaN nanowires. Due to the strain induced self-organization effect, the size of the InGaN disk 
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becomes smaller than the n-GaN nanocrystal diameter. The incorporation of AlGaN barrier 

layers, instead of GaN barrier layers, leads to the formation of an AlGaN shell structure 

surrounding the InGaN quantum disk active region, due to the smaller Al adatom diffusion 

length compared to Ga and In adatom diffusion. As a consequence, the growth fronts including 

the top and sidewalls of the InGaN region can be covered by AlGaN layers, thereby leading to 

the spontaneous formation of large band-gap AlGaN shell structures. The growth conditions of 

InGaN/AlGaN multiple quantum disk layers included a substrate temperature of 650°C, a 

nitrogen flow rate of 1.2 sccm, a forward plasma power of ~ 350 W, In BEP ~8.1 × 10-8 Torr, Ga 

BEP ~1.8 × 10-8 Torr, and Al BEP ~4.2 × 10-9 Torr, respectively. By repeating the growth 

process, coaxially aligned cone-like AlGaN shell layers can be fabricated surrounding the InGaN 

multiple quantum disk structures, schematically shown in Fig. 2(a). The SEM image is shown in 

Fig. 2(b). 

 

 

 
 
Figure 1. Schematic illustration and FE-SEM image of the patterned Ti thin film nano-hole mask 

fabricated on n-type GaN template on sapphire substrate. 

 

 
 

(a)                                                   (b)                                               (c) 

Figure 2. (a) Schematic of InGaN/AlGaN nanowire heterostructure, which consists of n-GaN cladding 

layer, core-shell InGaN/AlGaN multiple quantum disk active region, and p-GaN cladding layer. (b) 

Tilted-view SEM image of the InGaN nanowires. (c) Photoluminescence emission spectra of 

InGaN/AlGaN core–shell multi-quantum disk nanowires (green curve) and InGaN/GaN multi-quantum 

disk nanowires without AlGaN shell (blue curve) measured at 300 K. 

 

Optical properties of the semi-polar InGaN/AlGaN core-shell heterostructure were studied using 

photoluminescence (PL) spectroscopy. Shown in Fig. 2(c) is the PL spectra measured at room 

temperature using a 405 nm laser as the excitation source. It is seen that the PL intensity of the 

semi-polar InGaN/AlGaN core-shell is enhanced by nearly a factor of eight, compared to 
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InGaN/GaN heterostructure without the formation of AlGaN shell. The shell structure 

spontaneously formed on the sidewalls of the active region can lead to drastically reduced non-

radiative surface recombination due to the effective lateral confinement offered by the large 

band-gap AlGaN shell. Moreover, unique quasi 3D structure exhibits massively enhanced 

surface emission and improved carrier injection efficiency, due to the much larger active area. It 

is also well known that such semi-polar structure can effectively suppress the quantum-confined 

Stark effect (QCSE) due to the reduced polarization fields. 

 

2.2. Electrically pumped InGaN nanowire surface emitting laser diodes 

 

 
(a)                                                   (b)                                               (c) 

Figure 3. (a) The electric field profile of the band edge mode (λ = 523 nm) calculated by the 3D finite-

difference time-domain method. (b) Current-voltage (I-V) characteristics of the laser device. Inset: EL 

image of the green lasing. (c) EL spectra measured from different injection currents under CW biasing 

conditions at room-temperature. 

 

By exploiting the photonic band-edge resonant effect of the nanocrystal array, we have 

demonstrated an electrically injected surface-emitting green laser diode without using 

conventional thick and resistivity DBRs. The device operates at 523.1 nm and exhibits a low 

threshold current density ~400 A/cm2 and highly stable operation at room-temperature. In this 

design, each nanowire consists of n-type GaN cladding layer (~370 nm thick), multiple InGaN 

quantum disk active region, and p-type GaN cladding layer (190 nm thick). The nanowires have 

a spacing ~30 nm, and the lattice constant is 250 nm. At the band edge, the low group velocity is 

achieved when the slope of dispersion curve become zero, i.e. near the  point the group velocity 

of light becomes zero (dw/dk → 0), thereby leading to the formation of a stable and large single-

cavity mode. The mode profile is simulated and shown in Fig. 3(a). The mode intensity is mostly 

distributed in the nanocrystals. The extremely low group velocity leads to the long interaction 

time between radiation field and active material and consequently gives rise to a strong gain 

enhancement. 
 

InGaN nanowire surface-emitting laser diodes were fabricated using planarization, polyimide 

passivation, contact metallization, and photolithography techniques. Shown in Fig. 3(b) is a 

representative current-voltage (I-V) curve of the device, which clearly shows rectification 

characteristics with a sharp turn-on voltage of ∼3.3 V at room temperature. The device exhibited 

excellent I-V characteristics, which is partly due to the significantly reduced defect density and 

enhanced dopant incorporation in nanowire structures. The electroluminescence characteristics 

were measured under CW biasing conditions at room temperature. Figure 3(c) shows the 
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electroluminescence spectra of the laser measured under different injection currents. At low 

injection current density of ~200 A/cm2, the device exhibits a broad emission spectrum centered 

at ~524 nm, with a full-width-at-half-maximum (FWHM) ~30 nm, which corresponds to the 

spontaneous emission of the multiple quantum disk active region. A sharp lasing peak at ~523.1 

nm wavelength was observed with increasing injection current. The strong lasing spot is shown 

in the inset of Fig. 3(b). Variations of the output power vs. injection current were further 

measured, which exhibits a clear threshold at ~400 A/cm2.  

 

In summary, we have demonstrated a surface-emitting laser diode by utilizing bottom-up InGaN 

nanowire arrays. Compared to the conventional GaN VCSELs, lasing and surface emission is 

achieved without using thick, resistive, and often heavily dislocated DBRs. This unique laser 

concept can be readily extended to achieve monolithic surface-emitting laser diodes operating 

across the entire visible, as well as mid and deep UV wavelengths, and to realize such lasers on 

low cost, large area Si wafers. Our studies therefore open a new paradigm in the design and 

development of surface-emitting laser diodes, wherein the performance is no longer limited by 

the availability of DBRs, lattice mismatch, and substrate availability. 
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